动态图说明
先借用一下wikipedia的一张图
快速排序使用分治法(Divide and conquer)策略来把一个序列(list)分为较小和较大的2个子序列,然后递归地排序两个子序列。
步骤为:
挑选基准值:从数列中挑出一个元素,称为“基准”(pivot), 分割:重新排序数列,所有比基准值小的元素摆放在基准前面,所有比基准值大的元素摆在基准后面(与基准值相等的数可以到任何一边)。在这个分割结束之后,对基准值的排序就已经完成, 递归排序子序列:递归地将小于基准值元素的子序列和大于基准值元素的子序列排序。 递归到最底部的判断条件是数列的大小是零或一,此时该数列显然已经有序。
选取基准值有数种具体方法,此选取方法对排序的时间性能有决定性影响。
Demo说明
举例来说,现有数组 arr = [3,7,8,4,2,1,9,5,5],分区可以分解成以下步骤:
- 选择最后一个元素为基准元素:
pivot ↓ 3 7 8 4 2 1 9 5 5
- 从左到右(除了最后的基准元素),循环移动小于基准元素 5 的所有元素到数组开头,留下大于等于基准元素的元素接在后面。在这个过程它也为基准元素找寻最后摆放的位置。循环流程如下:
循环 i == 0 时,storeIndex == 0,找到一个小于基准元素的元素 3,那么将其与 storeIndex 所在位置的元素交换位置,这里是 3 自身,交换后将 storeIndex 自增 1,storeIndex == 1:
pivot
↓
3 7 8 4 2 1 9 5 5
↑
storeIndex
循环 i == 3 时,storeIndex == 1,找到一个小于基准元素的元素 4:
┌───────┐ pivot
↓ ↓ ↓
3 7 8 4 2 1 9 5 5
↑ ↑
storeIndex i
交换位置后,storeIndex 自增 1,storeIndex == 2:
pivot
↓
3 4 8 7 2 1 9 5 5
↑
storeIndex
循环 i == 4 时,storeIndex == 2,找到一个小于基准元素的元素 2:
┌───────┐ pivot
↓ ↓ ↓
3 4 8 7 2 1 9 5 5
↑ ↑
storeIndex i
交换位置后,storeIndex 自增 1,storeIndex == 3:
pivot
↓
3 4 2 7 8 1 9 5 5
↑
storeIndex
循环 i == 5 时,storeIndex == 3,找到一个小于基准元素的元素 1:
┌───────┐ pivot
↓ ↓ ↓
3 4 2 7 8 1 9 5 5
↑ ↑
storeIndex i
交换后位置后,storeIndex 自增 1,storeIndex == 4:
pivot
↓
3 4 2 1 8 7 9 5 5
↑
storeIndex
循环 i == 7 时,storeIndex == 4,找到一个小于等于基准元素的元素 5:
┌───────────┐ pivot
↓ ↓ ↓
3 4 2 1 8 7 9 5 5
↑ ↑
storeIndex i
交换后位置后,storeIndex 自增 1,storeIndex == 5:
pivot
↓
3 4 2 1 5 7 9 8 5
↑
storeIndex
循环结束后交换基准元素和 storeIndex 位置的元素的位置:
pivot
↓
3 4 2 1 5 5 9 8 7
↑
storeIndex
那么 storeIndex 的值就是基准元素的最终位置,这样整个分区过程就完成了。
接下来就是按照前面的步骤重复拆分[3,4,2,1,5]和[9,8,7]了。